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An Outline

I. Introduction/ Motivation

II. Some properties of binary variates

III. An approach for generating and modeling

correlated binary data

IV. Modeling multiple correlated binary

measurements,

        -An application to diagnostic testing

        -Improving the fit by introducing further

dependence among the multiple tests
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Introduction/ Motivation:

II. Modeling Correlated Binary Data:

II.A : Correlation due to sharing some common

element (X).

        Examples: Measurements on:

        -pair of eyes or ears  (same person), or

        - on siblings ( same parents), or

        - on tooth=s decay ( same location: mouth).

II.B. Possible correlation due to similarity in the

mechanism that generated the data, as in

diagnostic tests.
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An approach for modeling and generating multiple

correlated binary data is desired to:

- investigate small sample properties of estimation

methods such as the GEE method.

- model and analyze such data.
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II. Some Properties of the Binary Variates:

Property II.1

Let X and U be two indep. r.v.  s.t. X Í Ber (α) and

U Í Ber (β), then:

 Y = UX      (2.1)

Then: Y Í Ber (α β), and 1-Y Í Ber (1-α β)

Property II.2:

Let U and V be two indep. r.v.  s.t. UÍ Ber(β)

andVÍ Ber(1-θ) and X be as in II.1, and define:

Y =  U X + V (1-X)             (2.2)
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Then: YÍ Ber[α β + (1-α) (1-θ)].

That is, the mixture of two binary variates is again a

binary variate.

Interpretation:

Let X be the true unobserved disease status of a

patient and let Y be the results of an error-prone test,

then by ( 2.2) we have:

      P( Y = 1)= β α + (1-θ)(1-α)

and       P( Y = 0)= (1-β) α + θ(1-α)

In evaluating the accuracy of a diagnostic test two

types of errors are usually encountered:

P( Y = 0/ X =1) = β        FNR (=1- sensitivity)                     

P( Y = 1/ X =0) = θ        FPR (=1- specificity)
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A similar interpretation holds for signal transmission.

We will re-visit the above interpretation for

diagnostic testing in the application ( Section IV).

Property II.3:

                          m

Let { U i }     be a sequence of indep. binary r.v.=s
                          i =1

with parameters β i , i=1,2, ...k, then:
            m

Y = J U i

                    i=1

is again a binary r.v. with parameter
       m                         m

 ( J  βi ), denoted as YÍ Ber ( J  βij ).

      i=1                                                                          i=1
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Properties II.1 and II.2 can be used for generating

pairs of correlated binary data, and Property II.3 can

be used for generating a vector of arbitrary

dimensions of correlated binary variates.

For modeling, X plays the role of the common

element, which induces the correlation between the

binary data.

III. Generating Pairs of Correlated Binary

Variates:

Use Property II.1, to define Yi j as:

Yi j = Uij Xi  for  i=1,2, .... k ;  and  j=1,2 (3.1)

where Xi (i=1,2, ... k) is a set of indep. Ber. (αi )

variates and Uij (i=1,2, ... k, j=1,2 ) is a set of indep.
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Ber. (βij ) variates which are independent also of the

Xi=s.  Then by Property (II.1), we have:

õ (Yi j )/ pij  =   αi βi j       (3.1)

ρi12 = (1-αi ) pi1  p i2 / αi  σi1 σi2                  (3.2)
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ρi12 satisfies the following bounds :

0# ρ i12 # min { (p i1 q i2 /q i 1 p i2 ) 
2, (q i 1 p i2 /p i 1 q i2 ) 

2}

(3.3)

For a given set of (pij , j=1,2 ) and (ρi12=s ), one can

solve (3.2) and (3.3) for the set of parameters αi,  βi1,

and βi2 in order to generate correlated variates with

the required values for pij  and ρi12=s. Specifically we

have:

α i =  [  pi1 pi2 / ( ρ i 12  σi 1 σ i2 + pi1 pi2) ]
 

and β ij = pij / αi  for j = 1, 2 

III. 2 Generating Pairs of Non-positively

Correlated Binary Variates:

Use of properties II.1 and II.2 and define:
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Yi 1 =    Ui1 X i 

Yi 2 = 1-Ui2 X i for i=1,2, .... k            (3.4)

Here ρi12 is bounded by:

max {- (p i 1 p i2 /q i 1 q i2 ) 
2, - (q i 1 q i2 /p i 1 p i2 ) 

2}

        #    ρ i12# 0  (3.5)

    

III. 3  Generating Pairs of Correlated Binary

Variates with Full Range Correlation:

Use Property II.3, and define:

Yi j = V ij Uij X i + (1-Vij) (1-Uij  X i)

                   for  i=1,2, ....k and  j=1,2 (3.6)
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where Xi and  Ui j (i=1,2, ... k; j=1,2 ) as defined in

III.1 and Vij is a sequence of indep. Bern.(θij) rv,

which are indep. of X i and  Ui j (i=1,2, ... k; j=1,2 ).

The representation in ( 3.6) reduces to that of (3.1) for

θ i1 =1 and θ i2 =1 and it reduces to that of (3.4) for θ i1

=1 and θ i2 =0 .

ρi12 =α i  (1-α i ) βi 1β i 2  (2θi1- 1)  (2θ i2  - 1) /σi 1   σi2    

(3.7)

ρi12 is non-negative when each of θi1 and  θi2 > (<)

0.5 ; and it is negative when  θi1 > 0.5 and  θi2 < 0.5 or

vice versa.  ρi12 satisfies:

max {- (p I 1 p i2 /q I 1 q i2 ) 
2, - (q I 1 q i2 /p I 1 p i2 ) 

2}# ρ i12

      # min { (p I 1 q i2 /q I 1 p i2 ) 
2, (q I 1 p i2 /p I 1 q i2 ) 

2} 

(3.8)
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The range of ρ i12 in (3.8) is the max. (Prentice, 1988,

and Emrich and Piedmonte, 1991).

For a given set of  pij=s and ρi12=s, one can use (3.6) to

generate k pairs of correlated binary variates.
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IV. Application:

IV.I.  HIV data (Qu et el.,1996, Yang & Becker,

1997), results of  4 diag. tests applied to 428 HIV

patients.

Table 1: Freq. & Res. of Fitted LCM to 4 Tests Class. of 428  HIV Patients 1

Response  Pattern Residuals

Y1

Z1

Y2

Z2

Y3

Z3

Y4

Z4

     Frequency L C M LCM + λ 23

1 1 1 1 128 7.547 0.075

1 1 1 0 0 -0.024 -0.019

1 1 0 1 4 -7.531 -0.046

1 1 0 0 1 0.809 0.820

1 0 1 1 83 -7.486 0.211

1 0 1 0 0 -0.066 -0.015

1 0 0 1 17 7.902 -0.193

1 0 0 0 4 -1.129 -0.811

0 1 1 1 0 -0.017 -0.012

0 1 1 0 0 -0.058 -0.001

0 1 0 1 0 -0.542 -0.536

0 1 0 0 6 -0.182 -0.276

0 0 1 1 0 -0.148 -0.011

0 0 1 0 0 -1.589 -0.025

0 0 0 1 15 0.307 0.537

0 0 0 0 170 2.209 0.302

1 Data Source: Qu et al (Biometrics, 1996, 798-808)
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The purpose of the analysis is to estimate the

accuracy of each of the diagnostic tests in the absence

of the >gold standard=, after accounting for the

dependence when it is present.

Analysis Steps:

- Consider the representation in (2.2) for each test,

and assume given X=x,  the tests are independent.

This is the classical setting for the Latent Class Model

(LCM).

L( β, θ, α / z) %     

                 n ( z)             

k    1- z i           z i                    k       z i           1-z i

J   – J  β i  (1-β i )  +  (1-α)  J  θi   (1-θi )        �
z       i=1                                    i=1  
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A nonlinear optimization algorithm can be used to

derive the MLE of the parameters of the model. The

results of this fit are given in the following table.

        Par.     Estimate  (Asym.S.E.)        Asy. 95 % C.I.

        α          0.540   ( 0.024 )             ( 0.483 ,   0.597 )

        β1        0.000   ( 0.001)              (  -.002 ,   0.003 )

        β2        0.429   ( 0.033 )             (  0.352,   0.506 )

        β 3        0.087   ( 0.019 )             ( 0.043 ,  0.132 )

        β4        0.000   ( 0.001  )            ( -.003 ,   0.003 )

        θ1        0.030   ( 0.013  )            ( -.000 ,  0.060 )

        θ2        0.036   ( 0.013  )            (  0.004 , 0.067 )

        θ3        0.009   ( 0.007 )             (  -.007 ,  0.026 )

        θ4        0.081   ( 0.020  )            ( 0.034 ,  0.127 )

Goodness of Fit:

        Source       SS     DF       Weighted MS

        Residuals 19.031         7        2.719

Examination of the residuals from the fitted LCM
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(Table 1) shows dependency between tests 2 and 3

results, when the diagnoses of the tests are positive.

To accommodate this dependence we extend the

LCM by including a dependence parameter (rββ ) in

the model ( Vacek, 1985 and Torrance-Rynard and

Walter, 1996).

When the underlying true diagnosis is positive, the

dependence parameter between tests 2 and 3 (rββ ) is

bounded by:

 r ββ # β2 (1-β3 )β1 β4      and  r ββ #(1-β 2) β3 β1 β4

A similar relation holds when the true diagnosis is

negative rθθ .

Results of including both dependencies  r ββ and  r θθ

show that the contribution of rθθ  to improving the fit,
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in the presence of r ββ , is minimal. Thus, we include

only r ββ. The results of fitting this model are given in

the following table.

Par. Estimate (Asym.S.E.)  Asy. 95 % C.I.

        C      0.660   ( 0.149 )      ( 0.295 ,  1.025)

        α      0.541   ( 0.024 )      ( 0.482 ,  0.600)

        β1    0.000   ( 0.001 )      ( -.002 ,   0.002 )

        β2    0.430   (  0.033 )     ( 0.350,   0.510 )

        β 3   0.090   ( 0.019 )     ( 0.043 ,   0.136 )

        β4    0.000   ( 0.001 )      ( -.002 ,   0.002 )

        θ1    0.028   ( 0.012  )     ( -.002 ,   0.057 )

        θ2    0.036   ( 0.013  )     (  0.003,  0.068 )

        θ3    0.000   ( 0.001 )      (  -.002,   0.002 )

        θ4    0.079   ( 0.020 )      (  0.031 ,  0.126 )   

Goodness of Fit:

Source                  Weighted SS     DF     Weighted MS
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Residuals                   4.533        6         0.756

Residuals Correlation of Fitted LCMs to HIV Data
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IV.II.  Dentistry Data:(Espeland and Hanelman,1989)

Table 2: Freq. and Res. of Fitted LCM to 5 dentists Class.of 3869 denX-

Ray 1

Response Pattern Residuals
Y1 Y2 Y3 Y4 Y5 Frequency L C M LCM +λ13 LCM + λ13 + λ14 LCM + λ13 + λ14

+ λ12

1 1 1 1 1 100 41.614 28.312 19.219 0.913

1 1 1 1 0 1 -4.392 -3.939 -3.439 -3.703

1 1 1 0 1 72 10.936 -6.302 2.059 6.851

1 1 1 0 0 3 -2.668 -2.611 -2.408 -2.601

1 1 0 1 1 27 -12.261 7.006 -2.040 1.594

1 1 0 1 0 6 2.305 1.882 2.273 2.011

1 1 0 0 1 20 -22.002 -6.191 2.740 -0.807

1 1 0 0 0 2 -4.023 -4.483 -4.642 -4.421

1 0 1 1 1 17 -6.519 -4.015 -2.554 2.312

1 0 1 1 0 2 -0.180 -0.071 0.205 -0.081

1 0 1 0 1 20 -4.708 -3.870 -3.819 -4.830

1 0 1 0 0 1 -1.542 -1.569 -1.446 -1.478

1 0 0 1 1 14 -2.082 -3.515 -2.409 2.693

1 0 0 1 0 6 3.900 3.760 -1.115 -0.335

1 0 0 0 1 26 0.830 -1.380 -2.880 -3.348

1 0 0 0 0 22 0.791 1.276 2.499 2.880

0 1 1 1 1 56 -30.407 -8.354 3.327 2.947

0 1 1 1 0 8 -0.068 -0.487 0.178 -0.271

0 1 1 0 1 85 -6.570 8.448 -7.760 -4.727

0 1 1 0 0 15 3.792 3.154 3.355 3.689

0 1 0 1 1 67 5.988 -27.176 -16.316 -9.725

0 1 0 1 0 17 4.854 4.696 4.977 5.489

0 1 0 0 1 191 38.795 12.274 -0.670 7.201

0 1 0 0 0 188 -25.893 -6.230 -0.854 -4.276

0 0 1 1 1 22 -13.147 -14.101 -12.446 -9.396

0 0 1 1 0 8 3.965 3.814 4.163 3.816

0 0 1 0 1 63 15.523 12.850 12.089 10.765

0 0 1 0 0 23 -5.628 -4.114 -3.848 -3.236

0 0 0 1 1 75 25.362 23.234 23.011 1.618

0 0 0 1 0 43 -18.932 -13.491 -12.455 -2.820

0 0 0 0 1 789 -41.353 -17.221 -11.551 -4.061

0 0 0 0 0 1880 43.720 18.413 12.557 5.337



22

Goodness of Fit for a sequence of Models:

Source                  Weighted SS     DF     Weighted
MS

Res. (LCM)               131.997        21         6.286
Res. (LCM13)               74.104        20         3.705
Res. (LCM1314)             49.298        19         2.595
Res. (LCM131412)           27.712           18         1.540

Residuals Correlation of Fitted LCMs to Dental Data

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10

Tests' Ordering 

C
or

re
la

tio
n

YRESID RES13
RES1314 RES131412



23

Residuals of Fitted LCMs to Dental Data
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